
On the Construction of the Minimum Cost
Content-Based Publish/Subscribe Overlays

Yaxiong Zhao and Jie Wu
Department of Computer and Information Sciences

Temple University
{yaxiong.zhao, jiewu}@temple.edu

Abstract—Content-based publish/subscribe overlay is gaining
popularity in large-scale content distribution applications for its
flexibility and anonymity. Since such overlays are built on top of
diverse infrastructures, minimizing the cost of using network re-
sources in the overlays is challenging. In this paper, we tackle the
problem using a combinatorial optimization approach. We assume
that each user can simultaneously be publisher and subscriber,
and brokers are dedicated servers. The problem is proved to be
NP-hard and APX-complete. Therefore, we formulate an integer
programming (ILP) problem, and design a two-stage optimization
algorithm, which captures the cost of routing traffic in different
parts of the overlay. This algorithm separately approximates the
sub-problem of each stage and then combines the results to obtain
the final results. We further propose a novel formulation based
on sub-channeling and Steiner tree/star problem, which simplifies
the analysis of content-based routing and facilitates an intuitive
approximation algorithm. The approximation algorithm is then
translated into a distributed algorithm that dynamically adjusts
the connections between brokers and clients when the network
undergoes dynamisms. Simulation studies are conducted to verify
the performance of our proposed algorithms.

Index Terms—Content-based publish/subscribe overlay, com-
binatorial optimization, integer programming, Steiner tree/star,
NP-hard, APX-complete, approximation algorithm.

I. INTRODUCTION

Content-based publish/subscribe (CBPS) is a powerful com-
munication paradigm in which data content is treated as a
first class entity. CBPS uses multiple attribute constraints [8]
to identify contents and clients’ interests. Clients register
their interests on brokers through subscriptions. Messages are
routed by brokers according to the matching results between
their contents and clients’ subscriptions, which substantially
deviates from the end-to-end model used in Internet [16]. Due
to its inherent scalability, flexibility, and anonymity [8], it is
gaining popularity in various content distribution applications,
including stock exchange system [1], enterprise information
platform [3], and online news dissemination system [14].

In this paper, we consider the problem of constructing
content-based pub/sub overlay networks (we use “overlay”,
“pub/sub overlay”, or “overlay network” in this paper to
represent the same concept hereafter for brevity). As shown in
Fig. 1, a pub/sub overlay organizes tens of thousands of users
and brokers into a single connected network. A user/client can
be a publisher, which produces messages; and/or a subscriber,
which consumes messages from publishers. Brokers are re-
sponsible for collecting subscriptions and messages, which are
dedicated servers that do not publish or consume messages.

Broker

BrokerBroker

Fig. 1. A content-based publish/subscribe overlay.

Since a pub/sub overlay is formed by brokers and clients
situated on top of a underlying network, nodes (users and
brokers) rely on underlying network resources to communi-
cate. Since using network resources, especially bandwidth, on
overlays requires paying costs to the network owners, how the
overlay is constructed and the traffic is routed determine the
total cost. As a result, constructing such overlays gives rise to a
combinatorial optimization problem that minimizes the cost of
network resource use. Previous work on optimal construction
of pub/sub overlays do not distinguish between clients and
brokers [7], [6] and focuses on topic-/channel-based pub/sub
that classifies the content space into multiple categories. In
this model, clients are allowed to directly connect with each
other; which is problematic, since clients are able to collect
information from peers, which compromises the anonymity of
the pub/sub system. Additionally, their goal is to minimize the
number of overlay links, which is much simpler than ours.

In this paper, we assume that all overlay links have linear
cost functions. That is, the price of transmitting w units of data
on a link with a price of p incurs a cost of p×w, where p in
this paper. Here, p can be used to model various performance
metrics. For example, p can be delay, and p×w represents the
weighted sum of the delays of all network traffic. We choose
linear cost function because it is sufficient in current Internet
and is more tractable.

The first step is solving this optimization problem is to
estimate the traffic load between users, namely, the traffic
matrix. On the publisher side, we need to obtain the message
generating rate density function. Given this and a subscriber’s
subscription, its integration on the content space of the sub-
scription gives the rate of traffic needs to be forwarded from

the publisher to the subscriber. This information can be ob-
tained from publishers’ advertisements. If no advertisement is
available, the information is summarized from the publisher’s
message delivery history.

After obtaining the traffic matrix in the network, we try
to connect all the users through brokers. The restriction is
that users are not allowed to directly connect with each other,
and they must connect with one and only one broker. Brokers
form a complete graph on which traffic can be placed, and the
link costs between brokers satisfy the triangular inequality.
Our objective is then to find a connection between users and
brokers and a traffic placement between brokers, so that the
overall cost of the overlay is minimized.

We attack the problem first by separating the entire network
cost into two parts: access, which deals with the cost of
forwarding traffic between brokers and users; core, for the
cost between brokers. It turns out that if the cost of overlay
links comply with the triangular inequality [2], the optimal
solutions to both problems can be found in polynomial time.
Our first approximation algorithm is based on optimizing each
sub-problem sequentially in two stages, and then combining
them together to get the final overlay. We then look at
another scheme that takes advantage of the property of content-
space, which optimizes the cost of both access and core
parts together. The corresponding solution is based on Steiner
tree/star and has a better performance.

Even an optimal static topology cannot guarantee the ef-
ficiency when the traffic matrix of the network changes. In
a overlay network, there are churns, and changes of the ad-
vertisements and subscriptions of users happening constantly.
The message generation rates of publishers also change. In
such situations, the system should be able to reconfigure the
topology using distributed operations. We show in this paper
that our Steiner-tree/star-based centralized algorithm can be
directly implemented as a distributed manner. To summarize,
our contributions in this paper are:

• We study the problem of constructing optimal content-
based pub/sub overlay. The problem is formulated as a
combinatorial optimization problem with the objective
of minimizing the cost of bandwidth use in the entire
network. We prove its NP-hardness and give integer
programming (ILP) formulations.

• We present novel formulations of the problem based on
the separation of network cost and sub-channeling of
the content space. We present two-stage approximation
algorithms that run fast and produce fairly good results. A
novel Steiner-tree-based approximation algorithm is then
presented, which produces better results. We also show
that the steiner-tree-based algorithm allows a straightfor-
ward distributed implementation.

• We conduct extensive simulations studies based on realis-
tic application settings. Our simulation results show that
our solution helps reduce system cost significantly.

The rest of the paper is organized as follows: Section II de-
fines the problem; Section III presents two two-stage approx-
imation algorithms. Section IV discusses another formulation

of the problem and proposes another approximation scheme;
Section V introduces our system APIs; Section VI presents
the simulation results; Section VII summarizes related work;
Section VIII concludes this paper.

II. THE MINIMUM COST PUB/SUB OVERLAY

CONSTRUCTION PROBLEM

In this section, we formally define the minimum cost
pub/sub overlay construction problem and give its complexity.
We then present an integer programming formalism.

A. Problem statement

Given a set of brokers B and a large number of users U,
for each user i ∈ U, a generating rate function is given to
summarize the distribution of messages generated at this user;
it also has a subscription indicating its interests. We then are
able to find expected bandwidth use for any user or broker. We
are requested to wire the brokers and nodes into a connected
overlay that has the following constraints:

• Users are not allowed to connect with each other. Each
user must connect with one and only one broker;

• Brokers can connect to users and brokers;
• All links between brokers and users are bidirectional,

which have the same cost function for traffic directed
through both directions;

• The maximum traffic that can pass through a broker is a
constant.

Our goal is to wire the nodes into a connected overlay and
distribute traffic on the overlay links, so that the overall cost
of using the overlay links are minimized.

In a traditional distributed pub/sub system, brokers are
connected in an acyclic graph. In overlay networks, a tree
topology can substantially reduce the routing complexity,
which is desirable in many situations where the complexity of
the system is of great importance. Therefore, another variation
of the problem is to rewire all the brokers into a connected
acyclic graph, where the objective is the same as we discussed
before. We are not concerned with the wiring of users and
brokers since their wiring process guarantees that the entire
network is a tree once brokers are organized into a tree.

A similar problem is the topic-connected-pub-sub-overlay
construction [7] problem, which is defined as topic connec-
tivity problem. The problem’s objective, however, is to find
the minimum number of edges to connect users interested in
multiple subjects. Our problem is considerably harder than the
optimal topic connectivity problem. The differences are:

• Our problem aims to provide optimal connectivity and
traffic scheduling on content-based pub-sub networks.
The difference of the requirements of these two types of
pub/sub networks results in completely different problem
structures. The solutions of our problem have more
extensive use than the the topic-/channel-based networks;

• The objective of our problem is to find the wiring with the
minimum cost. The optimal topic connectivity problem,
however, is to find one with minimum edges, which does
not consider the bandwidth use;

…...

…...
Steiner nodes

Demanding nodes

(a) Steiner tree

…...

…...

Subscriber

Brokers

Publisher

(b) Minimum cost pub/sub overlay

Fig. 2. The conversion from a Steiner tree problem to a minimum cost
content-based pub/sub overlay problem.

• Our problem treats brokers and users differently. But in
optimal topic connectivity problem these two roles are
treated as the same;

A more closely related problem is the Steiner tree prob-
lem [17]. The major difference is that our problem aims to
find the configuration that has the minimum delay instead of
minimum edge weight in the steiner tree problem. We obtain
the complexity of this problem in the following theorem:

Theorem 1. The minimum cost CBPS overlay problem is NP-
hard and APX-complete.

Proof: This problem is NP-hard and APX-complete. We
can show that the edge weighted Steiner tree/star problem
can be reduced to a special version of the problem, which
is a special case of the general Steiner tree/star problem [13]
obtained by omitting the opening cost of steiner nodes. We
show below that any Steiner tree problem can be expressed as
an optimal overlay construction problem. To see this, consider
an instance of the Steiner tree problem, as shown in Fig. 2.
An identical optimal overlay construction problem is obtained
as follows:

• All Steiner nodes become brokers;
• All demand nodes become users;
• Select a user as the only publisher. Set all other users’

generating function to none, so that they do not generate
messages;

• All subscribers have the identical subscription that
matches all the messages generated by the sole publisher;

• The publisher generates a message with a unit bandwidth
demand;

• All edges become overlay links;
• The unit bandwidth cost of each link is set to the edge

weight;

Note that since all subscribers are interested in the same
message, any message will not traverse a link more than
once. Additionally, since the publisher generates messages
that consume a unit of bandwidth, the cost of the optimal
overlay will be identical to the weight of the optimal Steiner
tree. Therefore the Steiner tree problem is reduced to the
minimum cost pub/sub overlay construction problem, which
means that it is at least as hard as the Steiner tree problem and
is NP-hard. Similarly, since the metric Steiner-tree problem is
APX-complete [17], our problem also is APX-complete. The
theorem is proved.

B. An integer programming formulation

Integer linear programming (ILP) is a convenient tool of
solving large-scale combinatorial problems because there are
plenty of available solvers. We provide an ILP formulation of
the minimum cost CBPS overlay problem, which is based on
the classic Steiner tree formulation.

The problem is quite complex since content-based routing
makes messages non-replicative. Non-replicative means that a
message will be consumed by any broker that has the matched
subscriptions, so that it will never be transmitted more than
once on any overlay link. An example is that the actual amount
of traffic of two flows traversing the same overlay links in the
overlay might be less than the sum of the traffic of the two
flows. As a result, we cannot distribute traffic among brokers
using the traditional flow model.

For each user i ∈ C, there is a message generating
rate function Gi(·). This function is defined on the entire
content space S. The message generated at user i is given
by integrating Gi(·) over S, assuming that the union of the
subscriptions of all users encompass the entire content space.
The outbound traffic of user i is:

bi(out) =

∫
S

Gi(·)d·

On the contrary, the incoming traffic for user i is all the
messages that matches its subscriptions Si. It is obtained by
integrating all the generating function of users other than i
over Si and then summing them up:

bi(in) =
∑
j �=i

∫
Si

Gj(·))d·

We use a binary variable xij ∈ {0, 1} to indicate whether
user i is connected to broker j, and a real-valued variable c ij

to represent the price of the overlay link between i and j. It
is straightforward to compute the cost of forwarding traffic
between brokers and users with the following equation:

C1 =
∑
i

∑
j

[xij(bi(out) + bi(in))cij]

Then, we need to formulate the cost of carrying traffic
between brokers. We use a binary variable y ij to indicate
whether brokers i and j are connected via an overlay link,
and zijk to indicate whether the link is chosen to forward
flow k that needs bandwidth fk. The cost of the overlay link
between brokers i and j is denoted as c ′ij . The cost is thus
obtained in the following equation:

C2 =
∑
i

∑
j

∑
k

(yijzijkfkc
′
ij) (1)

In the above equation, the content conservation must be
held, i.e. the content of the incoming and outgoing traffic must
be the same, which is different from the flow conservation of
the traditional network flow model.

Algorithm 1 Two-stage greedy packing: The first stage
B := {User IDs}
U := {Broker IDs}
conns := ∅ //The set of connections
for i ∈ U do

min := +∞
min index := −1
for j ∈ B do

if load(j) + bi(in) + bi(out) ≤ Cj && cij < min then
min := cij
min index := j

end if
end for
conns := conns ∪ < i,min index >

end for
RETURN conns

Note that the above equation is not applicable in content-
based networking. As we discussed before, the content con-
servation in a content-based pub/sub network is different from
the simple fluid model of traditional networks, where flows
traversing the same links are summed up. In a pub/sub net-
work, if two flows are originated from the same publisher, the
amount of traffic when they pass trough a link is determined
by the subscriptions of the destinations of those two flows.

Let us take a closer look at Eq. 1. The flow from brokers
i to j is determined by the messages collected in i and
the subscriptions registered in j. Note that the flow here is
unidirectional. The sum of all the generating rate functions
for all the users connected with i is

∑
k xkiGk(·), which is

denoted as Gi. The union of all the subscriptions registered
on j is

⋃
k xkjSk, which is denoted as Sj . Since each flow is

corresponding to an ordered pair < i, j > for all brokers, we
can get the flows that path through the overlay link < i, j >
as Fij = {k | xij �= 0, zijk �= 0}, where there is one-to-one
correspondence between flow id k and two end-points of the
flow < i, j >. Therefore, we can get the traffic that traverses
the overlay link from broker i to j as follows:

Tij =
∑

<i,j>∈Fij

⋃
<i,j>∈Fij

∫
⋃

Sj

Gi(·)d·

We need to rewrite Eq. 1 as follows:

C2 =
∑
i

∑
j

Fijc
′
ij

The final ILP formulation is formulated as follows:

minimize C1 + C2 (2)

for any broker j ∈ B:∑
yijzijk =

∑
yjhzjhk = 1 (3)

xij , yij , zijk ∈ {0, 1} (4)

∑
i

xij(bi(in) + bi(out)) ≤ Cj (5)

In practice, the performance of each broker will inevitably
degrade with the increasing workload, which is shown in Eq. 5.
Therefore, we need to limit the volume of traffic passing
through each broker. The traffic handled by a broker includes
two parts: 1) messages sending from and to all the users asso-
ciated with it; 2) messages transmitting between other brokers
that pass through it. The second part is omitted in the following
analysis. The reason is that we assume brokers can collect
information of all the brokers in the overlay, so that each
message will be assigned a path before sending out. Therefore,
brokers do not need to perform the content matching, which is
the dominant part of the message processing overhead. So it
can be removed in Eq. 5. Additionally, the problem becomes
more tractable to solve in this way.

III. TWO-STAGE APPROXIMATION

We can relax the ILP in Section II to a linear programming
(LP) problem, and get the result using rounding. In this paper,
we do not use this approach for its complexity. Nonetheless,
the optimization goal shown by Eq. 2 gives rise to an natural
greedy approximation algorithm. As presented below, our
greedy approximation is based on the idea that separating C 1

and C2 in the optimization steps and find an approximation
result for each of them, then combining the results to form a
solution to the whole problem.

A. Two-stage greedy packing

We do not seek to find a bounded approximation to the
problem formulated in Section II. A two-stage greedy packing
algorithm is presented in this section. In the first stage, each
user connects with the broker that minimizes the cost specified
in Eq. 1. In the second stage, brokers are connected and traffic
is routed using the shortest path algorithm. The combination
of the results of the two stages is used as the approximation
solution to the original problem. In the first stage, each user
connects to the broker that has the lowest-cost overlay link.
Users are packed together to each broker as long as the
aggregated traffic does not exceeds the broker’s capacity. The
algorithm is shown in Algorithm 1.

We define uniform subscriber group (USG) as a set of users
that have the same subscription. Given a publisher and a USG,
we essentially need to find a minimum cost multicast tree to
connect them, since each message does not traverse any link
more than once. We use this property in the flow placement for
brokers. For each broker, we compute the USGs for all other
brokers on the entire content space. The content spaces of all
USGs are non-overlapped. Since the link cost between brokers
satisfies the triangular inequality, the minimum multicast tree
connects the broker and a USG is a MST on their induced
complete graph, which involves no nodes other than the broker
and the USG. The proof is as follows: Assume that there is at
least one such broker that is not the publisher and is not in the
USG and is included in the multicast tree. By replacing the
links between two brokers in the set by a directly connected
link, we obtain a tree with less cost. This contradicts the
assumption, which proves the claim.

1 2

3 4

1 2
5

1

3 4 9

7
8 1 2 3 4

1
2
3
4

10 4 3

3 6 6

9 2 1

4 9 5
16 21 15 10

17
15
12
18

10
1

Fig. 3. The overlay network used in the examples.

1 2

3 4

1 2
1

3 4

7
1

Fig. 4. The result of executing Algorithm 1.

An sample overlay network is given in Fig. 3. Circles
represent users, and squares represent brokers. Their IDs are
labeled. The edges between users and brokers are labeled
with their costs. The corresponding traffic matrix is given in
the table. The number in the ith row and jth column is the
bandwidth demand from user i to j. The last column and
row summaries the total outgoing traffic and incoming traffic,
respectively, for each user.

Fig. 4 shows the obtained connections between users and
brokers using Algorithm 1. Since the bandwidth demand is
not used in the algorithm the traffic table is not shown. The
resultant overlay is consisted of the minimum cost links. As-
suming that flows between users have no overlapped interests,
the overall cost of the whole overlay is 525.

B. Two stage clustering

A better approximation scheme is based on clustering. The
global traffic matrix for all users is known. We try to assign
users that have a large amount of traffic to the same broker
that has the minimum end-to-end cost. This is different from
the greedy packing in which only the cost between brokers
and users are considered. Here, the idea is to put as much
traffic as possible into the two-hop path, which is provided by
assigning those users to the same brokers.

The first stage of the clustering algorithm is to assign all
users to brokers. The pseudo code is shown in Algorithm 2.
We call the users connected to the same broker a cluster.
In this stage, we try to collocate users on the same brokers
to minimize the traffic inside clusters. The first step of this
stage is to get an initial assignment for all the brokers.
Each broker will be assigned a pair of users that have the
maximum bandwidth-to-cost ratio (BCR). After then, each
user is assigned to the broker that has the maximum BCR.
The assigning process ends when all users are connected to
brokers. The second stage is the same to the two-stage greedy
packing algorithm.

Use the same example in Fig. 3. The resultant overlay is
shown in Fig. 5. The overall cost of the overlay is 706. This
is considerably larger than the two-stage greedy packing. The
results on large scale networks are more insightful. And in the

Algorithm 2 Two stage clustering: The clustering stage
U := {UserIDs}
B := {BrokerIDs}
for broker ∈ B do
{i, j} ← argmax(

bij
cij

)

U← U\{i, j}
Assign i and j to broker

end for
for all i ∈ U do

B ← B

for broker ∈ B do
if L(broker

⋃
i) > Cbroker then

Remove broker from B
end if

end for
min← argminb∈B(

Bib
ci

)
Assign i to broker min

end for

1 2

3 4

1 2
5

1

9

7
1 2 3 4

1
2
3
4

10 4 3

3 6 6

9 2 1

4 9 5
16 21 15 10

17
15
12
18

1

Fig. 5. The result of executing Algorithm 2.

example, the connections between brokers are too simple to
represent the distinctions of two algorithms.

IV. ANOTHER FORMULATION BASED ON

SUB-CHANNELING AND ITS SOLUTION

The integer programming formulation is too contrived to be
solved efficiently. Besides, the greedy approximation cannot
provide sufficiently good results, as indicated in the simulation
results in Section VI. Therefore, in this section, we consider
a much clearer formulation and present the corresponding
solutions.

A. Sub-channeling

Note that what makes the ILP complicated is the integra-
tion of the message generating function on specific content
space. Here, we use histograms to approximate the message
generating function. In the following discussions, we use
one-dimensional content space for simple presentation, which
apply directly in multi-dimensional cases.

In Fig. 6, a histogram is used to approximate an arbitrary
function. The value at each interval is the average value

0 |C|

Generating
density function

Fig. 6. The histogram used to approximate an arbitrary message generating
function.

…...

…...

Brokers

Subscriber

Publisher

Fig. 7. For a single channel, the sub-network of a single publisher can be
logically isolated from the rest of the network.

of the original function. A generating function now can
be represented by a set of numbers {g1, g2, ..., gT }, where
gi ∈ {0, 1}. The intervals are also used to approximate the
subscriptions. A subscription is represented by a minimum
number of intervals, and is then encoded as a set of numbers
{s1, s2, ..., sT }, where si ∈ {0, 1}. A number “1” indicates
that a subscription includes this interval.

Now we can get the cost on each channel and then sum
them together to obtain the overall cost. The reason of dividing
content space into non-overlapping channels is that the traffic
on different channels is non-overlapping so that their costs can
be summed directly. The drawback is that false-positive will
result in non-optimal results. Note that a false-positive will
not happen in message forwarding since this sub-channeling
is not used in message forwarding.

On each channel the overall cost is summed according
to the connections between clients and brokers. For the cth
channel, given a variable xij ∈ {0, 1} that indicates the
connection between client i and broker j (1 if connected, 0 if
disconnected). Consider a single source s and channel c, the
receipts of s’s messages are determined by all the subscriptions
of all users in the network. Messages are transmitted on links
specified by xij .

Again, we first consider the cost for the traffic be-
tween clients and brokers, and do not take the traffic
cost between brokers into consideration right now. The
cost is given by

∑
b∈B

xsbgsc +
∑

b∈B;j∈U
gscxbjsjc. For

all pairs of clients, say i and j, the cost in the access
part is

∑
i∈U

(
∑

b∈B
gicxibcib +

∑
j∈U,j �=i;b∈B

gicsjcxjbcjb).
We need to sum all costs on all channels to get the overall
cost in the network. Let costc denote the above equation, the
objective function becomes:

minimize cost =
∑
c∈C

costc (6)

We then use minimum-cost spanning tree to connect bro-
kers. We use yij ∈ {0, 1} to indicate the connection between
broker i and j. The cost of spanning tree is:

∑
i,j∈B

cijyij (7)

with the constraint that:

subject to
∑
i,j∈B

≥ |B| − 1

∑
i,j∈B

≤ |B| − 1, ∀B ⊆ B

(8)

All other constraints are the same as Eq. 3, 4, 5. Now we
have a linear objective function which has off-the-shelf tools to
handle in practice. A primal-dual [10] approximation scheme
can be applied directly. We aim to find intuitive heuristic
algorithms that are simple to implement, so we do not seek
the primal-dual solutions.

B. Solving the problem

The problem becomes an edge-weighted Steiner tree/star
problem. However, since each user can connect to one and only
one broker, when combining the solutions of the Steiner tree
problem on each channel, assignments are likely conflicting.
This issue also happens when combining trees obtained from
different publishers. In other words, we obtain an approxi-
mated solution for each publisher on each channel, which are
|U| · T trees in total. The ultimate goal is to combine these
trees to form a single overlay.

The following algorithm addresses this issue. We show in
Section VI that this algorithm produces better results than the
two-stage approximation schemes presented in Section III. The
algorithm works in 3 phases:

• Phase 1. Find the optimal Steiner tree for each channel
and each publisher. For an edge ij between user i and
broker j, a weight is assigned on it, which is the traffic
passing through it;

• Phase 2. For each user, the weight of the edges to all
brokers is normalized. Arbitrarily chose a broker for the
user using the normalized weight as the probability;

• Phase 3. According to the assigned connections, the MST
between brokers is found;

In phase 1, we use MST approximation [17] to find the
connection for each Steiner tree problem on each channel for
each publisher. In the MST approximation algorithm shown
in Algorithm 3, nodes (clients and brokers) are connected
with shortest paths instead of edges. Note also that, after
connecting a user to a broker, the user can no longer connect
to other brokers in the successive steps. As a result, already
connected users are substituted by their associated brokers in
the following execution of the algorithm.

In phase 2, we rely on the spanning trees obtained in phase 1
to get the final results. Denote Bu the set of brokers associated
with user u in all the spanning trees obtained in phase 1. Note
the |Bu| is at most T, which is the number of sub-channels.
We randomly assign each user to one broker of the Bu using
the normalized bandwidth as the probability.

In phase 3, we connect brokers and place flows based on
the connections between clients and brokers obtained in phase
2. It is clear that the flows must be placed on a spanning tree
of all the brokers. Since any message does not need to traverse
any link more than once, the minimum cost flow placement

Algorithm 3 MST approximation for the Steiner tree/star
problem

U := {User IDs on sub-channel i}
T := ∅ //The set of edges of the spanning tree
dist[s] := 0 //s is the initial source
for each user u in U other than s do

color[u] := WHITE
dist[u] := +∞
parent[u] := ∅
path[u] := ∅

end for
ENQUEUE(PQ, s)
while PQ �= ∅ do

u := DEQUEUE(PQ)
if parent[u] �= NONE then

for each v ∈ U do
if dist(parent[u], v) < dist[v] then

dist[v] := dist(parent[u], v)
if color[v] == WHITE then

ENQUEUE(PQ, v)
color[v] := GRAY
parent[v] := prev[v]
path[v] := path(u′, v)

else if color[v] == GRAY then
UPDATE(PQ,v)

end if
end if

end for
else

vmin := argminv∈U(dist(u
′, v)

parent[u] = next[u]
parent[vmin] := prev[vmin]
path[vmin] := path(u, vmin)

end if
color[u] = BLACK
INSERT (T, path[u])

end while
Return T

must be on a tree. This tree connects all the brokers that
are linked to the publisher and subscribers. Since traffic of
different publishers cannot be mixed together, the spanning
tree of different publishers can be calculated independently and
obtain the optimal flow placement between brokers. Similarly,
traffic of different channels can also be optimally routed on
multiple spanning trees.

Another reminder is that we have not consider the case
where messages generated by clients are not interested in by
any users. In Eq. 6 and 2, all messages are treated as if they
interested by some users. However, we can remove the part
of non-interested messages before applying the optimization,
and the results are the same.

C. Distributed implementation

The above centralized algorithm can be translated into a
distributed implantation as follows: Each broker, knowing the
subscriptions of all other brokers’ associated clients, indepen-
dently redirect its associated clients to another broker that can
reduce its cost of routing messages to all other brokers. In
this way, a broker is treated as a “bigger” user whose interests
are the union of all the subscriptions of its associated clients.

…...

Publisher

Subscribers …...

Brokers

Fig. 8. Using minimum spanning tree to approximate the Steiner tree/star
problem.

Each broker is able to find the best connection for a user with
the following information:

• The user’s subscription;
• The user’s link cost to all brokers in the network;
• The cost of all the links between all brokers;

These information can be collected efficiently. The dis-
tributed algorithm works by periodically redirect the users that
currently has the most traffic to another broker, if necessary.
By enumerating the link from the user to all brokers, we can
find the best connection for that user. The user is then redi-
rected to that broker, using the APIs presented in Section V.

V. SYSTEM DESIGN AND APIS

Each user knows a subset of brokers that he/she can connect
to. The list of brokers that is known to each user can be
distributed by a central web server, like the download servers
that are provided by the download website and can be selected
by the user. The client side software is then responsible for
interacting with the connected broker.

First, subscriptions are forwarded to the broker using the
register() API. The generating function is obtained by sum-
marizing the past message publishing history, which can be
performed at client side or broker. For the sake of reducing
client side burden and unnecessary message exchange, we let
the broker perform this function using summarize() API.

Second, brokers run the user migration algorithm. A broker
send request to the users that are selected to migrate to another
broker using the request to move() API. The user can accept
or decline the migration request, depending on the local policy
employed by the user. For example, some user may stick
to a broker that offers additional services or price reduction
not shown in the protocol. If the client accept the migration
request, if runs the accept() API. The acceptance notification
is sent to its connected broker. The broker first replicate its
data to the broker that the client is about to migrate to. This
is done using the replicate() API.

The broker that the user connected to before is called home
broker, whereas the broker it migrates to is called foreign
broker, which follows the convention of Mobile IP [15]. The
client then obtains the foreign broker’s address from the home
broker. It sets up the connection using connect() API. Since the
foreign broker needs additional time to propagate the client’s
subscriptions, the home broker needs to forward the message
on behalf of the client in the time TTL. This is done by the
redirect() API.

Fig. 9. Cost reduction ratio of three algorithms on networks with different
scales.

VI. PERFORMANCE EVALUATION

We use simulations to evaluate the performance of our
algorithms. The results are analyzed in this section.

A. Simulation settings

We create a network comprised of 1000 to 10000 users.
The number of brokers in the network is 1/10 to 1/100 of the
users. We use one-dimensional content space for simplicity.
Each user is assigned a quadratic generating function. We
randomly generate quadratic functions and set their negative
part as 0 to obtain the generating function. Subscriptions of
each user is drawn randomly from the content space. All
brokers’ capacities are the same. It is set in such a way that
the summed capacity of all brokers is twice of all users’ traffic
demands.

For a network of a given size, we generate 100 network
samples and repeat the algorithm on each sample and get the
average overall network cost. Currently, no similar work has
been done. We compare with the random assignment where
all brokers and users are connected randomly.

B. Cost reduction ratio

A random assignment method randomly pairs each user
with a broker without considering any metrics. The resultant
network of random assignment represents the worst case cost
of any algorithm. For each assignment algorithm A, we define
its cost reduction ratio (CRR) as the ratio of the cost obtained
from random assignment to its result on the same network.
For each network, we can compute a CRR. The average
CRR on numerous network instances indicates the algorithm’s
performance. Note that random assignment produces costs that
grow linearly with the number of clients in the overlay.

We first look at the CRR of three proposed algorithms in
Fig. 9. Each data point is the averaged value of 100 randomly
generated network graph. The ratio between the numbers of
users and brokers is 100. The average cost between brokers is
the same as the average cost of the links between users and
brokers. Since greedy packing only considers access cost in
the first stage, it inevitably will render suboptimal connection
in the second stage. But in clustering, a part of the inter-user
traffic is considered in terms of clustering closely bound users

Access-to-core link cost ratio

Fig. 10. Cost reduction ratio of networks that have different core-to-access
link cost ratios.

Random Greedy packing Clustering Mixing

0.9 91.445 100.235 179.654

TABLE I
THE RUNNING TIME OF EACH ALGORITHM IN SECOND.

on the same broker which has a lower cost. Whereas in steiner-
tree mixing algorithm, the traffic on each channel is directly
considered in the sterner tree connection phase, which aims to
provide optimal connection.

There is a subtle factor that affects the performance of each
algorithm, that is, the difference between the cost of access
and core links. Put it in an intuitive way, if the core links are
so cheap that they almost can be treated as free, we can safely
ignore them in calculating the optimal connections. Therefore,
the performance difference between three algorithms becomes
smaller when core links’ cost is diminishing. We conduct
another set of experiments to verify this assumption. As shown
in Fig. 10, we vary the ratio of the average cost of access links
to that of core links, which is denoted access-to-core link cost
ratio. The ratio of the number of users to the brokers is 100,
as in Fig. 9, and there are 10,000 users. We generate 100
instances for a given network scale and obtain the average
results. Steiner-tree mixing explicitly optimizes the cost of
routing messages through the core links. Its CRR curve almost
does not change. The other two algorithms’ changes conform
with our analysis above, which gradually converge to Steiner-
tree mixing. This indicates that if the cost of core links is
sufficiently low, it can be safely ignored in the optimization
without sacrificing the overall performance.

C. Computational complexity

We evaluate the running time of three algorithms in this
section. We implement the algorithms in C++. The compiler
used is MingW G++ 3.4.5. We use -O0 flag to disable
optimization. The input network has 10000 users and 100
brokers and a access-to-core link cost ratio of 1. The machine
we use has an Intel R© Q8600 quad-core processor with 4GB
memory. We do not use parallelism in the code. The results are
shown in Table I. The difference between three algorithms is
dramatic, but is acceptable considering their performance. An
optimized implementation can make the algorithm practical.

VII. RELATED WORK

For a general survey on the pub/sub system, please refer
to [8]. Generally, pub/sub systems can be classified into two
categories: content-based [4], where contents and subscriptions
are specified by a content description language; and topic-
/channel-based [5], where the content space is divided into
multiple predefined channels. Minimum edge topic-/channel-
based pub/sub overlay construction problem has been studied
in [7]. The authors designed a greedy approximation algorithm
that has a logarithmic approximation ratio. Later in [6],
the authors proposed algorithms with similar approximation
bounds but with much less complexity and running time. Due
to the sophisticated content representation scheme of CBPS,
these solutions are not applicable in our problem.

The problem studied in this paper is closely related to many
hard problems in combinatorial optimization problem. The
first stage of our problem is similar to the facility location
problem [12]. The difference is that there is no broker opening
cost in our problem, which makes it quite simple. The second
stage of our problem generalizes the multi-commodity flow
problem, where there is a cost reduction when forwarding
multiple flows on the same links. Note that this is different
from the non-linear multi-commodity flow [11]. A non-linear
cost function is parameterized on the flow size where our cost
function is parameterized on the combinatorial structure of
flows. The complication of our problem lies in the complicated
combinatorial nature of content space matching.

The Steiner tree/star problem [13] has the same network
structure as ours, but has a different optimization goal. We
have formulated a steiner-tree based combinatorial approxima-
tion problem based on sub-channeling. Steiner tree algorithms
are then used as a component of our algorithm. Finding MST is
a 2-approximation algorithm of the steiner-tree problem [17].
There are (2− 2/k)-approximation algorithms for the Steiner
tree problem [9]. The 3-phase scheme is related to tabu-
search [18]. An important approximation scheme for com-
binatorial optimization problem is primal-dual method [10].
Although we presented an integer programming formulation
of our problem, it is not used due to its high complexity.

VIII. CONCLUSION

In this paper, we formulated an optimization problem of
constructing pub/sub overlay of the minimum cost of using
underlying network resources. We present an integer program-
ming formalism, which provide insightful knowledge about
the problem structure. We have designed two simple and
straightforward greedy approximation algorithms. In order to
achieve better results, we proposed the idea of sub-channeling
to facilitate a more efficient approximation algorithm called
Steiner-tree-mixing. Simulation results verify the performance
of our proposed algorithms. With the increasing adoption
of the pub/sub system in overlay networks, the problem we
studied in this paper will become more and more important.
Our work sheds light on the complexity and approximation
algorithms of the problem. Our future work will follows
two directions: theory and system. We are going to study

the approximation bound of the problem and implement a
prototype system.

ACKNOWLEDGMENTS

Thanks for the insightful comments from Dr. Abdallah
Khreishah. This research was supported in part by NSF grants
CCF 1028167, CNS 0948184 and CCF 0830289.

REFERENCES

[1] “TIBCO Rendezvous.” [Online]. Available: http://www.tibco.com/
[2] “Triangular inequlaity.” [Online]. Available: http://en.wikipedia.org/

wiki/Triangle inequality
[3] “Pub/sub at google,” lecture at CANOE Summer School, 2009.
[4] A. Carzaniga and A. L. Wolf, “Content-based networking: A new

communication infrastructure,” in NSF Workshop on an Infrastructure
for Mobile and Wireless Systems, ser. Lecture Notes in Computer
Science, no. 2538. Scottsdale, Arizona: Springer-Verlag, Oct. 2001,
pp. 59–68.

[5] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron,
“Scribe: a large-scale and decentralized application-level multicast
infrastructure,” Selected Areas in Communications, IEEE Journal
on, vol. 20, no. 8, pp. 1489–1499, 2002. [Online]. Available:
http://dx.doi.org/10.1109/JSAC.2002.803069

[6] C. Chen, H.-A. Jacobsen, and R. Vitenberg, “Divide and conquer
algorithms for publish/subscribe overlay design,” Distributed Computing
Systems, International Conference on, vol. 0, pp. 622–633, 2010.

[7] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Constructing
scalable overlays for pub-sub with many topics,” in PODC ’07: Pro-
ceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing. ACM, 2007, pp. 109–118.

[8] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131,
2003.

[9] P. W. F.K. Hwang, D.S. Richards, The Steiner Tree Problem. Elsevier,
1992.

[10] M. X. Goemans and D. P. Williamson, “The primal-dual method
for approximation algorithms and its application to network design
problems,” pp. 144–191, 1997.

[11] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, “Solving nonlinear
multicommodity flow problems by the analytic center cutting plane
method,” Math. Program., vol. 76, no. 1, pp. 131–154, 1997.

[12] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
lagrangian relaxation,” J. ACM, vol. 48, no. 2, pp. 274–296, 2001.

[13] S. Khuller and A. Zhu, “The general steiner tree-star problem,” Inf.
Process. Lett., vol. 84, no. 4, pp. 215–220, 2002.

[14] H. Liu, V. Ramasubramanian, and E. G. Sirer, “Client behavior and feed
characteristics of rss, a publish-subscribe system for web micronews,”
in IMC ’05: Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement. Berkeley, CA, USA: USENIX Association,
2005, pp. 3–3.

[15] C. Perkins, “Ip mobility support for ipv4,” no. 3344, 2002, rFC 3344
(Proposed Standard), interhash = e3c88fbb97920e9b73fbc4797054e502,
intrahash = c36b8210f2ab2de46d7f0e1cad0e489e Updated by RFC
4721.

[16] J. Saltzer, D. Reed, and D. Clark, “End-to-end arguments in system
design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, 1984.

[17] V. V. Vazirani, Approximation Algorithms. Springer, July 2001.
[Online]. Available: http://www.worldcat.org/isbn/3540653678

[18] J. Xu, S. Y. Chiu, and F. Glover, “Using tabu search to solve the steiner
tree-star problem in telecommunications network design,” Telecommu-
nication Systems, vol. 6, pp. 117–125.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

